jeudi 2 avril 2009

Cane ethanol


Main article: Ethanol fuel

This is generally available as a by-product of sugar mills producing sugar. It can be used as a fuel, mainly as a biofuel alternative to gasoline, and is widely used in cars in Brazil. It is steadily becoming a promising alternative to gasoline throughout much of the world and thus instead of sugar may be produced as a primary product out of sugar canes processing.

A textbook on renewable energy[7] describes the energy transformation:
At present, 741 tons of raw sugar cane are produced annually per hectare in Brazil. The cane delivered to the processing plant is called burned and cropped (b&c) and represents 77% of the mass of the raw cane. The reason for this reduction is that the stalks are separated from the leaves (which are burned and whose ashes are left in the field as fertilizer) and from the roots that remain in the ground to sprout for the next crop. Average cane production is, therefore, 58 tons of b&c per hectare per year.

Each ton of b&c yields 740 kg of juice (135 kg of sucrose and 605 kg of water) and 260 kg of moist bagasse (130 kg of dry bagasse). Since the higher heating value of sucrose is 16.5 MJ/kg, and that of the bagasse is 19.2 MJ/kg, the total heating value of a ton of b&c is 4.7 GJ of which 2.2 GJ come from the sucrose and 2.5 from the bagasse.

Per hectare per year, the biomass produced corresponds to 0.27 TJ. This is equivalent to 0.86 W per square meter. Assuming an average insolation of 225 W per square meter, the photosynthetic efficiency of sugar cane is 0.38%.

The 135 kg of sucrose found in 1 ton of b&c are transformed into 70 liters of ethanol with a combustion energy of 1.7 GJ. The practical sucrose-ethanol conversion efficiency is, therefore, 76% (compare with the theoretical 97%).

One hectare of sugar cane yields 4000 liters of ethanol per year (without any additional energy input because the bagasse produced exceeds the amount needed to distill the final product). This however does not include the energy used in tilling, transportation, and so on. Thus, the solar energy-to-ethanol conversion efficiency is 0.13%.

Aucun commentaire:

Enregistrer un commentaire